Temperature Conversion Table

def Fah():
    F=int(input('Enter the temperature on Fahrenheit(F)'))
    C=(F - 32) * 5/9
    K=(F - 32) * 5/9 + 273.15
    print("Fahrenheit Value :",F)
    print("Celsius Value :",C)
    print("Kelvin Value:",K)

def Cel():
    C=int(input('Enter the temperature on Celsius(C)'))
    F=(C * 9/5) + 32
    K=C + 273.15
    print("Fahrenheit Value :",F)
    print("Celsius Value :",C)
    print("Kelvin Value:",K)

def Kel():
    K=int(input('Enter the temperature on Kelvin(K)'))
    F=(K - 273.15) * 9/5 + 32
    C=K - 273.15
    print("Fahrenheit Value :",F)
    print("Celsius Value :",C)
    print("Kelvin Value:",K)
print("\n")
print('1.Fahrenheit to Celsius & Kelvin\n2.Celsius to Fahrenheit & Kelvin\n3.Kelvin to Fahrenheit & Celsius\n4.Exit')
n=int(input('Enter the choice:'))
if n==1:
      Fah()      
elif n==2:
      Cel()   
elif n==3:
      Kel()      
elif n==4:
      exit()
else:
      print('Invalid options')

Newton Raphson Method

#  Newton Raphson Method
# The Newton-Raphson method (also known as Newton's method) is a way
# to quickly find a good approximation for the root of a real-valued function


xcube=int(input('Enter the values for Xcube: '))

xsquare=int(input('Enter the values for Xsquare: '))

x=int(input('Enter the values for X: '))

constant=int(input('Enter the values for Constant: '))

X0=int(input('Enter the values for inital vaule X0: '))
 # It can be any value, but based on the incorrectness the root convergence
 #  will delay. Here we can use trail and error method for input value.
X1= X0-((((xcube*X0*X0*X0)+(xsquare*X0*X0)+(x*X0)+constant)/((xcube*3*X0*X0)+(xsquare*2*X0)+x)))

print ("Root at first approximations:",X1)

X2= X1-((((xcube*X1*X1*X1)+(xsquare*X1*X1)+(x*X1)+constant)/((xcube*3*X1*X1)+(xsquare*2*X1)+x)))

print ("Root at second approximations:",X2)

X3= X2-((((xcube*X2*X2*X2)+(xsquare*X2*X2)+(x*X2)+constant)/((xcube*3*X2*X2)+(xsquare*2*X2)+x)))

print ("Root at thrid approximations:",X3)

X4= X3-((((xcube*X3*X3*X3)+(xsquare*X3*X3)+(x*X3)+constant)/((xcube*3*X3*X3)+(xsquare*2*X3)+x)))

print ("Root at fourth approximations:",X4)

X5= X4-((((xcube*X4*X4*X4)+(xsquare*X4*X4)+(x*X4)+constant)/((xcube*3*X4*X4)+(xsquare*2*X4)+x)))

print ("Root at fifth approximations:",X5)

To read a coordinate point in a XY coordinate system and determine its Quadrant

x=int(raw_input('Enter the values for X'))
 
y=int(raw_input('Enter the values for Y'))

if x > 0 and y > 0:
  print 'x, y point lies in the First quandrant'
 
elif x < 0 and y > 0:
  print 'x, y point lies in the Second quandrant'
 
elif x < 0 and y < 0:
  print 'x, y point lies in the Third quandrant'

elif x > 0 and y < 0:
  print 'x, y point lies in the Fourth quandrant'

elif x == 0 and y == 0:
  print 'x, y point lies at the origin'

Reading files into Python

f = open("1.txt")
#create a text file which consists of names of students in class
# Printing file all the names
print("File contnet as in text file:",f.read())
f = open("1.txt")
# Printing file one by one letters
print("\nFile contnet one by one word fromtext file:")
next = f.read(1)
while next != "":
    print(next)
    next = f.read(1)

Multiplication of two Matrices

X = [[4,1,7],[2,1,8],[3 ,7,1]];
Y = [[6,8,1],[9,7,5],[2,3,1]];
result = [[0,0,0],[0,0,0],[0,0,0]];
        
for i in range(len(X)):
     for j in range(len(Y[0])):
         for k in range(len(Y)):
             result[i][j] += X[i][k] * Y[k][j]

for r in result:
 print(r)