import numpy as np
import tensorflow as tf
from tensorflow.keras.applications.inception_v3 import InceptionV3, preprocess_input
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import Model, load_model
import pickle
import cv2
import streamlit as st
from PIL import Image
# Load Pretrained InceptionV3 Model for Image Feature Extraction
base_model = InceptionV3(weights='imagenet')
model = Model(inputs=base_model.input, outputs=base_model.layers[-2].output)
# Load Pretrained Captioning Model
captioning_model = load_model("image_captioning_model.h5")
# Load Tokenizer & Word Mappings
with open("tokenizer.pickle", "rb") as handle:
tokenizer = pickle.load(handle)
max_length = 35 # Max caption length
# Extract Features from Image
def extract_features(img_path):
img = image.load_img(img_path, target_size=(299, 299))
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = preprocess_input(img)
feature_vector = model.predict(img)
return feature_vector
# Generate Caption
def generate_caption(img_path):
image_features = extract_features(img_path)
caption = "startseq"
for i in range(max_length):
sequence = [tokenizer.word_index[word] for word in caption.split() if word in tokenizer.word_index]
sequence = tf.keras.preprocessing.sequence.pad_sequences([sequence], maxlen=max_length)
predicted_index = np.argmax(captioning_model.predict([image_features, sequence]), axis=-1)
word = tokenizer.index_word.get(predicted_index[0], "")
if word == "endseq":
break
caption += " " + word
return caption.replace("startseq", "").replace("endseq", "").strip()
# Streamlit Web Interface
st.title("🖼️ AI Image Caption Generator")
uploaded_file = st.file_uploader("Upload an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
img = Image.open(uploaded_file)
st.image(img, caption="Uploaded Image", use_column_width=True)
# Save the uploaded image temporarily
img_path = "temp.jpg"
img.save(img_path)
# Generate Caption
with st.spinner("Generating Caption..."):
caption_text = generate_caption(img_path)
st.subheader("📝 Generated Caption:")
st.write(caption_text)